Alpha synuclein (α-synuclein) is a neuronal protein found predominately in presynaptic terminals. While the pathological effect of α-synuclein aggregates has been a topic of intense study in several neurodegenerative conditions, less attention has been placed on changes in monomeric α-synuclein and related physiological consequences on neuronal function. A growing body of evidence supports an important physiological role of α-synuclein in neurotransmission. In the context of traumatic brain injury (TBI), we hypothesized that the regional abundance of soluble monomeric α-synuclein is altered over a chronic time period post-injury. To this end, we evaluated α-synuclein in the cortex, hippocampus, and striatum of adult rats at 6 h, 1 day, 1, 2, 4, and 8 weeks after controlled cortical impact (CCI) injury. Western blot analysis demonstrated decreased levels of monomer α-synuclein protein in the ipsilateral hippocampus at 6 h, 1 day, 1, 2, and 8 weeks, as well as in the ipsilateral cortex at 1 and 2 weeks and in the ipsilateral striatum at 6 h after CCI compared with sham animals. Immunohistochemical analysis revealed lower α-synuclein and a modest reduction in synaptophysin staining in the ipsilateral hippocampus at 1 week after CCI compared with sham animals, with no evidence of intracellular or extracellular α-synuclein aggregates. Collectively, these findings demonstrate that monomeric α-synuclein protein abundance in the hippocampus is reduced over an extensive (acute-to-chronic) post-injury interval. This deficit may contribute to the chronically impaired neurotransmission known to occur after TBI.
Differential Regional Responses in Soluble Monomeric Alpha Synuclein Abundance Following Traumatic Brain Injury.

Create Post
Twitter/X Preview
Logout